


Keychain
Manager
Ken McLeod
Senior Engineer



Overview
• What is the Keychain and how does

it work?
• What can you do with it?
• Obtaining a code-signing certificate
• Using the Keychain Manager API
• Demo
• Q & A



What Is The Keychain?
• Secure repository for passwords,

cryptographic keys, and digital certificates
• Multiple data stores
• Currently file-based

• Built on industry-standard CDSA framework
• Provides transparent authentication to

services (single sign-on)



Keychain Terminology
• A Keychain is either locked or unlocked

• Data can only be retrieved from an
unlocked Keychain

• Each stored password, key, or certificate is
a Keychain item

• Default Keychain is the one to which new
Keychain items are added



Keychain Usage
• A system can have multiple Keychains

(typically one per user)
• More than one Keychain may be unlocked

at a time
• Keychains can be set to lock automatically



Keychain Usage (Cont.)
• Individual Keychain files are portable to

other systems
• Keychains can be located on AFP servers

and locked media
• Will support smart cards and removable

tokens in the future



Technical Details
• PowerPC machines only
• Can be called from 68K or PowerPC code–

Pascal, C, or C++
• Fully scriptable API
• Requires Appearance Manager, Drag

Manager, Navigation Services, Core
Foundation Library



Keychain 2.0

Mac OS 8.5 8.5.1 8.6 Sonata X

1.0 1.0.1 2.x

Where We’re At
• Now part of the Mac OS!
• Backward-compatible with Keychain 1.0

SDK (with the exception of
KCCreateKeychain)



Keychain and CDSA

Common Security Services Manager

Cryptography &
Data Storage

Trust
Policy

Certificate
Manager

File
Signing

URL
Acces

s

System
Security
Services

Common
Data
Security
Architecture

Keychai
n

Access

Apple
Signer

Apple
VerifierApplications Your

App

Keychai
n

Manager

CMS
Library



Private
Key

Public
 Key

Symmetri
c Key

AppleShar
e

Password

X.509v3
Certificate

Internet
Password

Generic
Password

Key Password Certificate

KC Item
Item class

Keychain Items



Server “ftp.apple.com”

Path

Protocol

“/private/stuff/”

ftp

“thinkdifferent”

Account “ken”

What’s In an Item?
• Two components: attributes and data



Item Attributes
• All items have common attributes

• Item class (e.g. “Internet password”)
• Date created and modified
• Label, description, and comment

• Each item class has additional attributes
• Attributes are used to find an item
• Attributes are encrypted



Item Data
• Cannot be searched or used to retrieve

an item
• Cannot be retrieved unless the Keychain

is unlocked
• Cannot be retrieved without the user’s

explicit permission
• Private and symmetric key data cannot

be retrieved



Internet Password
• Attributes

• Account name (“ken”)
• Server name (“ftp.apple.com”)
• Path (“/private/stuff/”)
• Protocol, Port , Security Domain

• Data
• Password string



AppleShare Password
• Attributes

• Account Name (“Ken”)
• Server Name (“Ken’s Machine”)
• Server Address (zone name, domain,

or IP address)
• Volume (optional)

• Data
• AFPXVolMountInfo structure



Certificate Item
• Attributes

• Certificate type
• Subject (name, e-mail address)
• Issuer
• Serial Number
• Date issued and expiration date

• Data
• X.509 certificate (BER-encoded)



Key Item
• Attributes

• Algorithm (e.g. RSA, DSA, FEE)
• Key size (e.g. 128-bit)
• Key usage (sign, encrypt, wrap)
• Date issued and expiration date

• Data
• Public keys: the key value
• Private/symmetric keys: not available!



How Secure Is It?
• Much better than status quo

• No need to write passwords down or
store them insecurely on disk

• Keychain password is never stored on disk
• Symmetric encryption key is derived

from the Keychain password
• Export-approved 128-bit RC2 encryption

for “access control” storage



How Secure Is It? (Cont.)
• Keychain is normally unlocked with

user interaction
• Programmatic unlock is allowed until

first failure (once per restart)
• Delay between failed authentication

attempts grows exponentially
• Prevents systematic attacks



How Secure Is It? (Cont.)
• Private Keychain items cannot be retrieved

without the user’s explicit permission
• Permission can be given on a per-item,

per-process, or per-Keychain basis
• Prevents rogue applications from

stealing passwords while Keychain
is unlocked

• Keys optionally require a usage password



What Can You Do with It?
• Store your application’s passwords securely

in a Keychain instead of a preferences file
• Applications can share passwords for

common services
• Store keys and digital certificates for

use with code signing, secure e-mail
and other applications



Obtaining a Certificate
• Go to a certificate authority’s Web site

(Thawte, VeriSign) using Navigator
• Navigator generates a key pair and sends

the public component to the CA
• Export the certificate and key pair from

Navigator as a PKCS#12 file
• Import the file to your Keychain



Obtaining
a Developer
Certificate
Mark Shuttleworth
President, Thawte



Keychain
Manager APIs
Craig Mortensen
Senior Engineer



API Overview
• Getting started with high-level calls
• Low-level “building block” routines
• Searching for items
• Managing Keychains
• Notification



Getting Started
• Call KeychainManagerAvailable

• Don’t need to explicitly create or unlock a
Keychain; let the user do it!

• Find password or certificate using high-
level calls



Finding an Item
• Use high-level calls to find a single

password or certificate that matches
a given set of attributes

• KCFindAppleSharePassword
• KCFindInternetPassword
• KCFindGenericPassword
• KCFindX509Certificate



Adding an Item
• Add a single password or certificate to the

default Keychain  using high-level calls
• KCAddAppleSharePassword
• KCAddInternetPassword
• KCAddGenericPassword
• KCAddX509Certificate



KCAddInternetPassword

KCNewItem
KCAddItem
KCSetAttribute
KCSetAttribute 
KCSetAttribute 
KCSetAttribute 
KCSetAttribute 
KCSetData

What High-Level Calls Do
• High-level routines (Add, Find) are

implemented using low-level “building
block” calls



Keychain Items
• Items are created by KCNewItem

• Items are added to the Keychain by
KCAddItem

• Items are accessed through a KCItemRef

• Manipulate item attributes using
KCGetAttribute,KCSetAttribute

• Manipulate item data using
KCGetData,KCSetData



Keychain Items (Cont.)
• Commit changes to an item using

KCUpdateItem

• Release the item using KCReleaseItem
when finished



Searching For Items
• Use KCFindFirst only when you expect or

want to find more than one item
• Continue searching with KCFindNext

• Release the search criteria when finished
by calling KCReleaseSearch



Managing Keychains
• KCRef identifies a Keychain by reference

• Currently, Keychains are file-based
• In the future, smart cards and

removable tokens will be supported
• KCCreateKeychain
• KCGetStatus
• KCCountKeychains
• KCGetIndKeychain



Notification
• Keychain events

• Unlock, Lock, Add, Find, GetData,
Delete, Update, DefaultChanged

• If you want to be notified of Keychain
events, install a callback with
KCAddCallback

• Register only for events you care about
• Use KCRemoveCallback when done



Demo



Keychain Does It For You
• Keychain is a secure repository for

passwords, keys, and digital certificates,
provided for you as a system service

• Easy to use; only a few calls are needed for
most applications

• In conjunction with other Security APIs,
allows developers to provide secure and
signed data



Hall C
Wed., 2:30pm

Hall C
Wed., 2:30pm

Hall C
Wed., 4:00pm

Hall C
Wed., 4:00pm

Hall J2
Fri., 4:00pm

Hall J2
Fri., 4:00pm

http://www.apple.com/developer/http://www.apple.com/developer/

Security APIs:
Keychain

Security APIs:
CMS, and URL Access

Data Security
Feedback Forums

SDK Information:

For More Information:



Q & A



Think different.™







